Talaksan:StationaryStatesAnimation.gif

Mula testwiki
Pumunta sa nabigasyon Pumunta sa paghahanap

StationaryStatesAnimation.gif(300 × 280 na pixel, laki: 223 KB, uri ng MIME: image/gif, nasilo na, 41 banhay)

Mula sa Wikimedia Commons ang file na ito at posibleng magamit sa ibang proyekto. Makikita sa baba ang paglalarawan sa pahina ng paglalarawan nito roon.

Buod

Paglalarawan
English: Three wavefunction solutions to the Time-Dependent Schrödinger equation for a harmonic oscillator. Left: The real part (blue) and imaginary part (red) of the wavefunction. Right: The probability of finding the particle at a certain position. The top two rows are the lowest two energy eigenstates, and the bottom is the superposition state , which is not an energy eigenstate. The right column illustrates why energy eigenstates are also called "stationary states".
Thus in every quantum stae,there are certain preferred positions of maximum probability
Petsa
Pinanggalingan Sariling gawa
May-akda Sbyrnes321
(* Source code written in Mathematica 6.0 by Steve Byrnes, Feb. 2011. This source code is public domain. *)
(* Shows classical and quantum trajectory animations for a harmonic potential. Assume m=w=hbar=1. *)
ClearAll["Global`*"]
(*** Wavefunctions of the energy eigenstates ***)
psi[n_, x_] := (2^n*n!)^(-1/2)*Pi^(-1/4)*Exp[-x^2/2]*HermiteH[n, x];
energy[n_] := n + 1/2;
psit[n_, x_, t_] := psi[n, x] Exp[-I*energy[n]*t];
(*** A non-stationary state ***)
SeedRandom[1];
psinonstationary[x_, t_] := (psit[0, x, t]+psit[1, x, t])/Sqrt[2];

(*** Put all the plots together ***)
SetOptions[Plot, {PlotRange -> {-1, 1}, Ticks -> None, PlotStyle -> {Directive[Thick, Blue], Directive[Thick, Pink]}}];
MakeFrame[t_] := GraphicsGrid[
   {{Plot[{Re[psit[0, x, t]], Im[psit[0, x, t]]}, {x, -5, 5}, PlotLabel -> Subscript[\[Psi],0]], 
     Plot[Abs[psit[0, x, t]]^2, {x, -5, 5}, PlotStyle -> Directive[Thick, Black],
		PlotLabel -> TraditionalForm[Abs[Subscript[\[Psi],0]]^2]]},
   {Plot[{Re[psit[1, x, t]], Im[psit[1, x, t]]}, {x, -5, 5}, PlotLabel -> Subscript[\[Psi],1]], 
     Plot[Abs[psit[1, x, t]]^2, {x, -5, 5}, PlotStyle -> Directive[Thick, Black],
		PlotLabel -> TraditionalForm[Abs[Subscript[\[Psi],1]]^2]]},
   {Plot[{Re[psinonstationary[x, t]], Im[psinonstationary[x, t]]}, {x, -5, 5}, PlotLabel -> Subscript[\[Psi],N]], 
     Plot[Abs[psinonstationary[x, t]]^2, {x, -5, 5}, PlotStyle -> Directive[Thick, Black],
		PlotLabel -> TraditionalForm[Abs[Subscript[\[Psi],N]]^2]]}
   }, Frame -> All, ImageSize -> 300];
output = Table[MakeFrame[t], {t, 0, 4 Pi*40/41, 4 Pi/41}];
SetDirectory["C:\\Users\\Steve\\Desktop"]
Export["test.gif", output]

Paglilisensiya

Ako, na may karapatang-ari ng akdang ito, ang naglalathala nito alinsunod sa ilalim ng sumusunod na mga lisensya:
Creative Commons CC-Zero Ang talaksang ito ay ginawang makukuha sa ilalim ng Dedikasyon ng Pandaigdigang Saklaw ng Madla CC0 1.0 ng Creative Commons.
Ang taong nag-ugnay ng isang akda sa kasulatang ito ay inilaan ang akda sa Commons sa saklaw ng madla

na isinusukong pangbuong-mundo ang lahat ng kanyang mga karapatan sa akda sa ilalim ng batas sa karapatang-ari, kasama ang lahat ng kaugnay at karatig na mga karapatan, hanggang sa naaabot ng batas. Maaari mong kopyahin, baguhin, ipamahagi at isagawa ang akda, kahit na para sa mga layunin pangkalakal, lahat-lahat na hindi nangangailangan ng pahintulot.

Captions

Add a one-line explanation of what this file represents
ECTODERM THE BUTTERFLY EFFECT OF AMUN

Items portrayed in this file

depicts English

20 Marso 2011

Nakaraan ng file

Pindutin ang isang petsa/oras para makita ang file noong puntong yon.

Petsa/OrasThumbnailSukatTagagamitKomento
ngayon19:21, 20 Marso 2011Thumbnail para sa bersyon noong 19:21, 20 Marso 2011300 × 280 (223 KB)wikimediacommons>Sbyrnes321{{Information |Description ={{en|1=Three wavefunction solutions to the Time-Dependent Schrödinger equation for a harmonic oscillator. Left: The real part (blue) and imaginary part (red) of the wavefunction. Right: The probability of finding the partic

Ginagamit ng sumusunod na pahina ang file na ito: